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Abstract—Reducing data communication over memory is one
of the main current engineering challenges. To achieve this, opti-
mization done solely at the application level is no longer sufficient.
Holistic design-space exploration is necessary to evaluate the
suitability of hardware architectures for a given application.
Furthermore, a software-hardware co-design is needed to be
able to leverage the inherent locality of programs and reduce
data motion in the system. For this to be possible, the locality
has to first be properly quantified. In this work, we propose
a new approach to characterizing both the spatial and the
temporal locality of a program using a hardware-architecture
agnostic, generalized reuse distance metric. We propose a locality
characterization metric in the form of a probability distribution
as well as a visualization tool that is able to express this metric
in an easily understandable way. We apply our new approach to
the study of several algorithms. We show that the output of our
visualization tool in the form of 2D locality plots, that we refer
to as locality heat-maps or simply heat-maps, is able to clearly
express the program’s spatial locality, even in cases where existing
metrics have proven less insightful. By quantifying both the
spatial and temporal aspects of locality, the approach we propose
can thus supply useful input not only to cache memory design,
but also to systems based on emerging technologies such as non-
volatile memory, systems that aim at bringing computation closer
to data.

I. INTRODUCTION

We are currently experiencing a shift of the performance
bottlenecks in a system in that more and more applications
are becoming increasingly less bounded by their computation
side and increasingly more bounded by the speed at which
data can be retrieved/written from/to memory. This is a direct
consequence of the increasingly larger difference between
processor and memory speeds. The necessity of a data-centric
system design approach instead of a traditional compute-
centric one is apparent if we look at the predicted gap between
I/O and compute power consumption of future computing
systems. Shalf et al. [1] anticipate that, by the end of this
decade, reading an operand from DRAM will consume at
least 100 times more energy than a floating-point operation.
Efficient data motion will soon represent an unavoidable
engineering challenge and, therefore, it will become essential
for applications to increase their awareness of the underlying
memory subsystem and using that awareness, enhance the way
they move data to exploit locality patterns as much as possible.

Many memory system models and program optimizations
have been proposed to address these issues. Most of them
have used cache hit rate as a metric to optimize the usage
of the cache memory system. Indeed, cache memory systems
work efficiently if subsequent memory accesses exhibit good

locality of references. Locality has two dimensions, a spatial
and a temporal one, and both impact application performance.
While spatial locality refers to the tendency of applications
to reference memory addresses that are near other recently
accessed addresses [2], temporal locality quantifies the amount
of reuse of the same memory location during application
execution. In order to analyze the impact of a program’s
locality on performance, we first need to quantify locality
and, if possible, efficiently visualize it. In this paper we
propose a generalization of the stack reuse distance metric
proposed in [2] to jointly characterize the program’s spatial
and temporal locality patterns. While stack reuse distance is
mainly useful to reason on the cache architecture that would
best fit a certain memory access pattern (e.g. cache line size),
our generalized metric can further be used and leveraged by
memory prefetchers which can bring data from the memory
closer to the CPUs ahead of time.

II. RELATED WORK

The data locality properties of programs have been exten-
sively studied and modeled in the context of both memory
design and code optimization. Beyond qualitative descriptions
provided in computer architecture books [3], various locality
characterization metrics have been proposed in literature. In
terms of temporal locality, Pyo et al. [4] introduce reference
distance as the total number of references between accesses
to the same data. Beyls et al. [5] show that this metric cannot
exactly predict cache behavior for fully associative caches,
but an alternative metric is able to do so. This metric is called
reuse distance or stack reuse distance [2] and is defined as
the total number of distinct data elements accessed between
two consecutive references to the same element. The same
study [5] uses this locality characterization metric to analyze
the distribution of the conflict and capacity misses in the
execution of code generated by an EPIC compiler, and reasons
on the impact of increasing parallelism in an application on
the number of capacity misses.

In terms of spatial locality, previous works have attempted
to quantify it via mainly scalar metrics that allow for easy
ordering and/or clustering of applications in locality classes.
This has been done for example by using some form of
reduction function to aggregate distances between consecutive
or close to consecutive memory accesses [6] or by looking at
locality from the perspective of the efficiency of cache line
usage [7]. All these studies however tend to treat the spatial
and temporal dimensions of locality as completely orthogonal
to each other, and thus only offer a pair of uni-dimensional,
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Fig. 1. Three locality representations for the customized random access algorithm: a) Scatter plot – it shows a set of consecutive memory addresses accessed
over time; b) Cumulative reuse distance distribution plot – the reuse distance is defined as in [2]; c) Spatio-temporal locality heat-map (PDF:PDF); d)
Spatio-temporal locality heat-map (PDF:CDF). For the latter two representations, the Y-axis represents the temporal dimension of the newly proposed metric
(by the number of consecutive accesses to memory), while the X-axis represents the spatial component of the metric (in number of bytes). The intensity of a
given heat-map ”pixel” is proportional to the value of the p(s, t) metric defined in Sec. III.

often even scalar views on the way applications handle data
accesses. We propose to generalize these concepts and quantify
accurately the entire two-dimensional spatio-temporal locality
characteristic of a program. While this approach has the draw-
back of replacing a small set of values with a locality signature
for each application, thus making it difficult to reason on
application categories, it also offers a much more complete
view of the application properties, allowing for increased
optimization potential, e.g., either via memory system/cache
design or prefetching strategies.

III. METHOD DESCRIPTION

Our workload model considers an application processing a
given input as an ordered list of instructions, each instruction
possibly incurring a memory reference. We filter the list for
instructions entailing a memory reference. In the resulting
ordered list, we assign subsequent instructions consecutive
indexes, starting with index 0. Thus the index is a measure
of temporality, as instructions with consecutive indexes will
be executed consecutively in time (without any other memory
affecting instructions in between). Hence, every entry in the
list is thus characterized by at least the following three
parameters:

• i - memory reference index;
• a - memory reference start address;
• n - memory reference length (in bytes).

The list serves as an input to the analysis. We quantify the
spatio-temporal locality as follows. To cover both the spatial
and temporal aspect, we seek a measure of the likelihood that,
given that a memory location is accessed at some point during
the execution of the application, a memory location situated
at a fixed distance s (in number of bytes) from the original is
accessed at a fixed distance in time t (in terms of the number
of memory-accessing instructions). As individual memory
references typically affect several bytes, we generalize this
goal to this case by considering the likelihood of a reference
that is s bytes away from any of the individual original byte
locations. Formally, given a memory reference (i, a, n) at
some point during the execution of an application, we seek
to measure p(s, t), defined as the probability that the next t-th
memory reference of the application (i+t, a′ = a+s, n′) will
have the property detailed in Eq. 1.

(a ≤ a′ and a+ n > a′) or (a > a′ and a < a′ + n′) (1)

In this case p(s, t) is defined for t ≥ 0 and s ≥ 0 and
is always a real number between 0 and 1. We compute this
probability set as follows. For each value of t, we extract every
pair of accesses that are at a distance t from each other in the
memory reference list, and then for every possible value of s,
we count how many of these pairs satisfy the property given by
Eq. 1. Let that number be ks,t. Then p(s, t) = ks,t/(|L| − t),
where L is the list of references and |L| is its length.
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Fig. 2. Three locality representations for the matrix multiplication algorithm: a) Scatter plot; b) Cumulative reuse distance distribution plot; c) Spatio-temporal
locality heat-map (PDF:PDF).

IV. IMPLEMENTATION DETAILS

We use the LLVM compiler infrastructure [8] to analyze
the program’s load/store memory activity. LLVM emulates a
machine with an unlimited number of registers and allows us
to measure application properties based on true data read-after-
write data dependencies. Moreover, it permits us to reason on
application performance/properties across different hardware
platforms with only one single LLVM execution.

We extended the LLVM interpreter with a memory analyzer
module which monitors the memory references during a
C/C++ program’s execution. Thus, we extract the full trace of
memory references together with their corresponding access
indexes and memory reference bit lengths, as required by
the model explained in Sec. III. We filter from the memory
reference list the references that on a real system would
translate into actual memory system (RAM, cache) read/write
operations. For example, accesses to temporary local variables
(e.g. for loop indexes) would typically be performed via
processor registers and not implicate the memory systems at
all.

The LLVM memory trace is input to a separate C++ analysis
application that computes the locality probability distributions
(p(s, t)) and creates the 2D locality heat-map that shows the
program’s both spatial and temporal locality in one single
graph. More precisely, the heat-map shows the probability of
accessing a memory address at a distance of exactly Distance
bytes from the currently accessed memory address in the next
exactly N memory references. We call this representation a
PDF-PDF (probability distribution function) spatio-temporal
locality – Fig. 1c). Variations of this plot are possible, e.g. the
PDF-CDF (cumulative distribution function) plot shows the
probability of accessing a memory address at a distance of
exactly Distance bytes from the currently accessed memory
address in one of the next N memory references – Fig. 1d) –
or the CDF-PDF which shows the probability of accessing a
memory address at a distance of at least Distance bytes from
the currently accessed memory address in the next exactly N
memory references.

V. PROOF OF CONCEPT

To show the benefits of our 2D locality heat-maps and
visualization method, we first implemented a proof of concept
algorithm that clearly exhibits spatial locality. We call this al-
gorithm customized random access. We designed the algorithm
as shown in the code sample below, where v is a vector of
N = 100 elements. For every t + 1 = 15 + 1 = 16 memory
accesses, the same vector element address is referenced.

m = 3000; N = 100; d = 10; t = 15;

for(int j = 0; j < m; j++){
int increment = 0, sum = 0;

for(int k = 0; k < t; k++){
int random = ((double) rand())/(RAND_MAX+1E-6)
var(k) = random*(N-d);
sum = sum + v[var(k)];

}

for(int k = 0; k < t; k++)
sum = sum + v[var(k)+d+increment++];}

Fig. 1 shows how the locality of this program is represented
using two commonly used approaches and our locality heat-
maps. The first scatter representation – Fig. 1a) – fails to
capture any locality pattern. On the other hand, the second
plot in Fig. 1b), the reuse distance distributions, exposes some
of the temporal locality characteristics, but fails to accurately
quantify spatial locality. Finally, our proposed spatio-temporal
representations – Fig. 1c) and d) – precisely indicate that there
is a significant probability of accessing a memory location
which is 4 · 10 = 40 bytes away from a current access, in the
next 16 memory accesses and that the probabilities of other
locality patterns are significantly lower.

Given a certain cache line size L, the reuse distance corre-
sponding to it captures only an aggregate measure of the first
L columns of our representation, and is thus severely limited
in its expressivity of locality, especially in terms of spatial
locality and spatio-temporal locality correlations.

VI. PRELIMINARY RESULTS

We apply our locality analysis methodology to a well-
known algorithm, i.e. matrix multiplication. We use one matrix
multiplication kernel of size 32. Fig. 2 shows the same three
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Fig. 3. Spatio-temporal locality heat-maps (PDF:PDF) for three MiBench [9] benchmark algorithms. a) Patricia (networking algorithm); b). Susan (image
processing algorithm); c). AES (encryption algorithm).

representations of locality for this algorithm as Fig. 1. Our
heat-map is able to accurately capture the increasing levels
of spatial locality that characterize this application whereas
the other two metrics fail to do so. Indeed, we can notice two
distinct locality patterns. One corresponds to the 0−15 spatial
range where both the reuse distance metric and the 2D locality
heat-map approach are able to identify memory reuse patterns
that occur with a probability between approx. 0.15 and 0.4.
Even for this first pattern, our approach provides significantly
more granularity. But there is also a second pattern that
consists of there being a reasonably high probability (in the
0.1−0.2 range) for an access to happen at a memory reference
2X bytes further from a current access (and with a stride of 8
bytes), in the X−th subsequent access. The reuse distance
metric fails to capture this pattern and, consequently, the
prefetching optimization that it enables, whereas our approach
makes it evident.

The method can be easily applied to most algorithms. In
Fig. 3 we show a few examples of the kinds of visualizations
that can be obtained. We applied the method to 3 algorithms
from the MiBench benchmark suite:

• Patricia is an algorithm used in network applications for
IP prefix lookup. Its corresponding locality heat-map is
shown in Fig. 3a).

• Susan is an image recognition package for corners and
edges detection. We analyze the smoothing capability of
this algorithm for locality patterns shown in Fig. 3b).

• Rijndael encryption (Advanced Encryption Standard) is
a block cipher with the option of 128-, 192-, and 256-
bit keys and blocks. We show the locality heat-map for
128-bit key and block in Fig. 3c).

For each of them, we notice that there are locality patterns
to be observed in the region for which a simple reuse distance
based analysis does not provide visibility into. In general, this
new method will bring most benefit compared to current state-
of-the-art for applications that exhibit a strong spatial locality
characteristic.

VII. PRACTICAL APPLICABILITY

The original goal of our locality analysis was to enable
holistic system design-space exploration. The locality dis-
tributions that are captured during run-time analysis were
meant to be used in a subsequent offline processing step to
generate coarse-grained bounds for full-system performance,
power consumption and cost estimation. This is achieved
by using a set of mathematical formulas that capture the
interaction between the properties inherent to the application
and the hardware characteristics of a system –cache line size,
cache size, cache associativity etc. In this context, application
properties need not refer only to spatial and temporal locality
(in the form of the distributions presented herein), but can also
include parallelism at different granularities, i.e., instruction-
level, thread-level or data-level or other aspects.

The method however is much more generic and has poten-
tially multi-fold applicability for system design. When needing
to reach a certain design goal, it is often the case that there
is a choice to be made between either different applications
to achieve that goal, different implementations of the same
application or even different compiler or runtime optimizations
for a given implementation. Our visualization technique allows
us to compare these different ways to achieve the goal from
a memory-reuse-potential perspective and identify the best
application/implementation/optimization.

Another application of the method lies in the domain of
prefetching. Our tool can show for example what type of mem-
ory access pattern an application has and thus help in deter-
mining what type of prefetching would enhance performance
most. Badawy et al. [10] presents an in-depth study of various
prefetching techniques and their relative performance on sev-
eral popular algorithms. If the pattern is relatively regular (e.g.
with affine array accesses) hardware-prefetching techniques
could be useful to address the CPU-memory performance gap.
Otherwise, if the pattern is iregular, software-prefetching could
be a better solution to hide memory latencies, provided that
the system has enough memory bandwidth.

Furthermore, the probability distribution generated by our
tool can be interfaced more intimately with a prefetching
engine and serve as the basis for that engine’s decisions of



when and what to bring from memory ahead of time.
Finally, although until now we have mainly focused on

single-system analysis, where locality is used to bridge the
gap between fast caches and slow RAM memory, the tool
can also be used in the context of distributed systems, where
applications run on several nodes and locality can be used to
bridge the gap between fast local processing and slow remote
data operations. The memory access distribution can be used
to answer such questions as for example what the optimum
amount of local memory is that would ensure a certain ratio
of local to remote processing.

For example, [11] presents an FPGA-based system that
moves computation close to data to greatly reduce the amount
of data that must travel across a slow I/O interface. The
system offloads data and I/O intensive application code to
SSD to exploit the low latency and high internal bandwidth of
non-volatile memory (NVM) technology. Using the temporal
CDF - spatial PDF version of the locality heat-map of an
application offloaded to the SSD, and assuming an interval
T of accesses for which we wish to guarantee a certain ratio
between computation accessing local versus remote data, we
can use the row corresponding to T in the heat-map to derive
the optimal SSD block size. Indeed, if the distribution is quasi
null past some value S on the spatial axis, then a block size
equal to S would already guarantee that a kernel running on
one storage processor would not need to access, within that
time frame, data farther away than in one of its two neighbors
as well as roughly a 1 : 1 ratio of local to remote data accesses.

Finally, in the context of the same FPGA-based system,
and similarly to identifying data that can be prefetched to the
processor, our locality information could be used to identify
data that needs to be processed in the next accesses and initiate
the appropriate processing thread on the memory device or
NVM controller. Such research directions will be further
explored in future work.

VIII. CONCLUSIONS

We have presented a locality characterization method for
quantifying and visualizing locality patterns in applications
and have shown several examples of how the approach applies
to real algorithms. We have shown that our 2D locality heat-
maps capture and provide useful information about both the
spatial and temporal locality of a program, thus an improve-
ment over the reuse distance metric. The locality probability
distributions provided by our method can be used by mem-
ory prefetchers to hide memory access latencies caused by
transfers across the memory hierarchy and can serve as a core
enabler for holistic software-hardware co-design, including in
the field of emerging data-centric technologies.

As future work, we plan a complete evaluation in terms
of locality of various benchmark suites such as SPEC, NAS
Parallel and Graph 500 and reason on the locality similarity of

different algorithms. We will also relate the measure of locality
obtained with the LLVM compiler infrastructure to actual
hardware program executions. Finally, we will analyze the
interaction between program parallelism and locality in order
to understand what the best trade-off is between parallelism
and the cost of data movement.
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